June 27, 2017 Volume 13 Issue 24

Mechanical News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

hyperMILL 2024 CAD/CAM software suite

OPEN MIND Technologies has introduced its latest hyperMILL 2024 CAD/CAM software suite, which includes a range of powerful enhancements to its core toolpath capabilities, as well as new functionality for increased NC programming efficiency in applications ranging from 2.5D machining to 5-axis milling. New and enhanced capabilities include: Optimized Deep Hole Drilling, a new algorithm for 3- and 5-axis Rest Machining, an enhanced path layout for the 3D Plane Machining cycle, better error detection, and much more.
Learn more.


One-part epoxy changes from red to clear under UV

Master Bond UV15RCL is a low-viscosity, cationic-type UV-curing system with a special color-changing feature. The red material changes to clear once exposed to UV light, indicating that there is UV light access across the adhesive material. Although this change in color from red to clear does not indicate a full cure, it does confirm that the UV light has reached the polymer. This epoxy is an excellent electrical insulator. UV15RCL adheres well to metals, glass, ceramics, and many plastics, including acrylics and polycarbonates.
Learn more.


SPIROL Press-N-Lok™ Pin for plastic housings

The Press-N-Lok™ Pin was designed to permanently retain two plastic components to each other. As the pin is inserted, the plastic backfills into the area around the two opposing barbs, resulting in maximum retention. Assembly time is quicker, and it requires lower assembly equipment costs compared to screws and adhesives -- just Press-N-Lok™!
Learn more about the new Press-N-Lok™ Pin.


Why hybrid bearings are becoming the new industry standard

A combination of steel outer and inner rings with ceramic balls or rollers is giving hybrid bearings unique properties, making them suitable for use in a wide range of modern applications. SKF hybrid bearings make use of silicon nitride (twice as hard as bearing steel) rolling elements and are available as ball bearings, cylindrical roller bearings, and in custom designs. From electric erosion prevention to friction reduction and extended maintenance intervals, learn all about next-gen hybrid bearings.
Read the SKF technical article.


3M and Ansys train engineers on simulating adhesives

Ansys and 3M have created an advanced simulation training program enabling engineers to enhance the design and sustainability of their products when using tapes and adhesives as part of the design. Simulation enables engineers to validate engineering decisions when analyzing advanced polymeric materials -- especially when bonding components made of different materials. Understand the behavior of adhesives under real-world conditions for accurate modeling and design.
Read this informative Ansys blog.


New FATH T-slotted rail components in black from AutomationDirect

Automation-Direct has added a wide assortment of black-colored FATH T-slotted hardware components to match their SureFrame black anodized T-slotted rails, including: cube connectors (2D and 3D) and angle connectors, joining plates of many types, brackets, and pivot joints. Also included are foot consoles, linear bearings in silver and black, cam lever brakes, and L-handle brakes. FATH T-slotted hardware components are easy to install, allow for numerous T-slotted structure configurations, and have a 1-year warranty against defects.
Learn more.


Weird stuff: Moon dust simulant for 3D printing

Crafted from a lunar regolith simulant, Basalt Moon Dust Filamet™ (not a typo) available from The Virtual Foundry closely mirrors the makeup of lunar regolith found in mare regions of the Moon. It enables users with standard fused filament fabrication (FFF) 3D printers to print with unparalleled realism. Try out your ideas before you go for that big space contract, or help your kid get an A on that special science project.
Learn more.


Break the mold with custom injection molding by Rogan

With 90 years of industry experience, Rogan Corporation possesses the expertise to deliver custom injection molding solutions that set businesses apart. As a low-cost, high-volume solution, injection molding is the most widely used plastics manufacturing process. Rogan processes include single-shot, two-shot, overmolding, and assembly. Elevate your parts with secondary operations: drilling and tapping, hot stamping, special finishes, punch press, gluing, painting, and more.
Learn more.


World's first current-carrying fastening technology

PEM® eConnect™ current-carrying pins from Penn-Engineering provide superior electrical connections in applications that demand high performance from internal components, such as automotive electronics. This first-to-market tech provides repeatable, consistent electrical joints and superior installation unmatched by traditional fastening methods. Features include quick and secure automated installation, no hot spots or poor conductivity, and captivation options that include self-clinching and broaching styles.
Learn more about eConnect pins.


New interactive digital catalog from EXAIR

EXAIR's latest catalog offers readers an incredible source of innovative solutions for common industrial problems like conveying, cooling, cleaning, blowoff, drying, coating, and static buildup. This fully digital and interactive version of Catalog 35 is designed for easy browsing and added accessibility. Customers can view, download, print, and save either the full catalog or specific pages and sections. EXAIR products are designed to conserve compressed air and increase personnel safety in the process. Loaded with useful information.
Check out EXAIR's online catalog.


5 cost-saving design tips for CNC machining

Make sure your parts meet expectations the first time around. Xometry's director of application engineering, Greg Paulsen, presents five expert tips for cutting costs when designing custom CNC machined parts. This video covers corners and radii, designing for deep pockets, thread depths, thin walls, and more. Always excellent info from Paulsen at Xometry.
View the video.


What can you secure with a retaining ring? 20 examples

From the watch dial on your wrist to a wind turbine, no application is too small or too big for a Smalley retaining ring to secure. Light to heavy-duty loads? Carbon steel to exotic materials? No problem. See how retaining rings are used in slip clutches, bike locks, hip replacements, and even the Louvre Pyramid.
See the Smalley design applications.


Load fasteners with integrated RFID

A crane, rope, or chain may be required when something needs lifting -- plus anchoring points on the load. JW Winco offers a wide range of solutions to fasten the load securely, including: lifting eye bolts and rings (with or without rotation), eye rings with ball bearings, threaded lifting pins, shackles, lifting points for welding, and more. Some, such as the GN 581 Safety Swivel Lifting Eye Bolts, even have integrated RFID tags to clearly identify specific lifting points during wear and safety inspections and manage them digitally and without system interruption.
Learn more.


Couplings solve misalignments more precisely with targeted center designs

ALS Couplings from Miki Pulley feature a simplistic, three-piece construction and are available in three different types for more precisely handling parallel, angular, or axial misalignment applications. The key feature of this coupling design is its center element. Each of the three models has a center member that has a unique and durable material and shape. Also called a "spider," the center is designed to address and resolve the type of misalignment targeted. Ideal for unidirectional continuous movement or rapid bidirectional motion.
Learn more.


What is 3D-MID? Molded parts with integrated electronics from HARTING

3D-MID (three-dimensional mechatronic integrated devices) technology combines electronic and mechanical functionalities into a single, 3D component. It replaces the traditional printed circuit board and opens up many new opportunities. It takes injection-molded parts and uses laser-direct structuring to etch areas of conductor structures, which are filled with a copper plating process to create very precise electronic circuits. HARTING, the technology's developer, says it's "Like a PCB, but 3D." Tons of possibilities.
View the video.


Concrete for taller wind turbine towers passes tests, could help expand wind energy nationwide

This image shows how Hexcrete cells can be assembled on-site and then a crane can stack them up to 140 m high. [Image courtesy: Sri Sritharan]

 

 

Sri Sritharan called up a digital map of the United States and pointed to a dark blue band running through the middle of the country.

That's wind country. The blue band runs east from the Rockies to just south of the Great Lakes, then around Arkansas and down to south Texas. It shows where there's potential capacity for wind turbines 80 m (about 262 ft) above the ground. That height is the current standard. You can see those towers all over Iowa.

But look at another map, said Sritharan, the Wilkinson Chair in Iowa State University's College of Engineering, a professor of civil, construction, and environmental engineering and the interim assistant dean for strategic initiatives. When turbines are 140 m (about 459 ft) off the ground, that blue band expands to the Southeast, moves around the Appalachians, and covers parts of the Northeast, according to studies by the U.S. Department of Energy's National Renewable Energy Laboratory based in Golden, CO.

"These slides are starting to create a lot of interest," Sritharan said. "Taller turbine towers can enable wind energy production in all 50 states, including those in the Southeast."

Winds at higher elevations, generally, are stronger and more consistent, even in wind-rich states such as Iowa and Texas. In fact, Sritharan said a 20-m increase (about 66 ft) in tower height creates a 10 percent boost in Iowa energy production.

Iowa State engineers test a full-size Hexcrete cell. [Image courtesy: Sri Sritharan]

 

 

And so Sritharan has been leading development of new concrete tower technology capable of reaching those heights.

He calls the technology "Hexcrete," which can also be combined with steel tubular technology to create hybrid wind turbine towers.

The basic idea of Hexcrete is that it's assembled from precast panels and columns made with high-strength or ultra-high-performance concrete. Those panels and columns can be cast in sizes that are easy to load on trucks. They are tied together on-site by cables to form hexagon-shaped cells. A crane can stack the cells to form towers as high as 140 m.

Sritharan has just completed an 18-month study of Hexcrete supported by $1 million from the U.S. Department of Energy, $83,500 from the Iowa Energy Center, and $22,500 of in-kind contributions from Lafarge North America Inc. of Calgary, Alberta, Canada. The project's industry partners also include the Siemens Corp.'s Corporate Technology center in Princeton, NJ; Coreslab Structures (OMAHA) Inc. of Bellevue, NE; and BergerABAM of Federal Way, WA.

Lab tests, economic studies
Sritharan and his research group have pushed and pulled an assembled test section with 100,000 lb of force for more than 2 million cycles. The test section passed that fatigue test. The researchers have also tested a full-scale cross-section of a tower cell for operational loads and extreme loads for a 2.3-MW Siemens turbine. Again, Hexcrete passed the tests.

"The testing was very successful," Sritharan said. "The testing did show the system will work as we expected. There are no concerns about the cable connections or the concrete panels and columns."

The technology also looked good in economic studies.

"Our study shows the Hexcrete option at heights of 120 to 140 m (about 394 to 459 ft) will be cost competitive," he said.

The Iowa State researchers used models from the National Renewable Energy Laboratory to calculate the levelized cost of energy. The levelized cost is the total cost of installing and operating an energy project over its expected life.

The researchers also worked with about a dozen wind energy companies to evaluate the models and confirm the economic findings were realistic.

Sritharan said the models show using Hexcrete technology to build 120- to 140-m wind turbine towers could drop the levelized costs 10 to 18 percent under the costs of current 80-m technologies.

A prototype tower
With the lab and economic studies showing positive results, Sritharan said he's working to form a university/industry partnership to build a prototype Hexcrete tower. He said the tower would likely be 100 to 120 m high (about 328 to 394 ft). And it could be entirely Hexcrete or it could be a hybrid tower with a Hexcrete base and a tubular steel top.

With appropriate financing, Sritharan said a prototype tower could be built in about a year. It could even be built in the Southeast.

That could be a good demonstration of the wind maps that, for example, show little potential for Alabama wind energy at 80 m, a little potential in the northeast corner of the state at 110 m (about 361 ft), and nearly statewide potential at 140 m.

"Tall towers," Sritharan said, "can add more capacity for renewable energy in all states across the nation."

Source: Iowa State

Published June 2017

Rate this article

[Concrete for taller wind turbine towers passes tests, could help expand wind energy nationwide]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2017 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy